Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Exp Hematol Oncol ; 13(1): 14, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326887

RESUMO

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.

2.
Nat Commun ; 15(1): 1009, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307859

RESUMO

Tumor-secreted factors contribute to the development of a microenvironment that facilitates the escape of cancer cells from immunotherapy. In this study, we conduct a retrospective comparison of the proteins secreted by hepatocellular carcinoma (HCC) cells in responders and non-responders among a cohort of ten patients who received Nivolumab (anti-PD-1 antibody). Our findings indicate that non-responders have a high abundance of secreted RNase1, which is associated with a poor prognosis in various cancer types. Furthermore, mice implanted with HCC cells that overexpress RNase1 exhibit immunosuppressive tumor microenvironments and diminished response to anti-PD-1 therapy. RNase1 induces the polarization of macrophages towards a tumor growth-promoting phenotype through activation of the anaplastic lymphoma kinase (ALK) signaling pathway. Targeting the RNase1/ALK axis reprograms the macrophage polarization, with increased CD8+ T- and Th1- cell recruitment. Moreover, simultaneous targeting of the checkpoint protein PD-1 unleashes cytotoxic CD8+ T-cell responses. Treatment utilizing both an ALK inhibitor and an anti-PD-1 antibody exhibits enhanced tumor regression and facilitates long-term immunity. Our study elucidates the role of RNase1 in mediating tumor resistance to immunotherapy and reveals an RNase1-mediated immunosuppressive tumor microenvironment, highlighting the potential of targeting RNase1 as a promising strategy for cancer immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Quinase do Linfoma Anaplásico , Carcinoma Hepatocelular/metabolismo , Linfócitos T CD8-Positivos , Terapia de Imunossupressão , Neoplasias Hepáticas/metabolismo , Estudos Retrospectivos , Ribonucleases , Microambiente Tumoral
3.
Cell Death Dis ; 14(11): 714, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919300

RESUMO

Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.


Assuntos
Linfoma de Célula do Manto , Humanos , Camundongos , Animais , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Regulação para Baixo , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37793852

RESUMO

Immunotherapy, in the form of hematopoietic stem cell transplantation (HSCT), has been part of the standard of care in the treatment of acute leukemia for over 40 years. Trials evaluating novel immunotherapeutic approaches, such as targeting the programmed death-1 (PD-1) pathway, have unfortunately not yielded comparable results to those seen in solid tumors. Major histocompatibility complex (MHC) proteins are cell surface proteins essential for the adaptive immune system to recognize self versus non-self. MHC typing is used to determine donor compatibility when evaluating patients for HSCT. Recently, loss of MHC class II (MHC II) was shown to be a mechanism of immune escape in patients with acute myeloid leukemia after HSCT. Here we report that treatment with the tyrosine kinase inhibitor, dasatinib, and an anti-PD-1 antibody in preclinical models of Philadelphia chromosome positive B-cell acute lymphoblastic leukemia is highly active. The dasatinib and anti-PD-1 combination reduces tumor burden, is efficacious, and extends survival. Mechanistically, we found that treatment with dasatinib significantly increased MHC II expression on the surface of antigen-presenting cells (APC) in a tumor microenvironment-independent fashion and caused influx of APC cells into the leukemic bone marrow. Finally, the induction of MHC II may potentiate immune memory by impairing leukemic engraftment in mice previously cured with dasatinib, after re-inoculation of leukemia cells. In summary, our data suggests that anti-PD-1 therapy may enhance the killing ability of dasatinib via dasatinib driven APC growth and expansion and upregulation of MHC II expression, leading to antileukemic immune rewiring.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Antígenos de Histocompatibilidade Classe II , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral
5.
Int J Biol Sci ; 19(10): 2957-2973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416781

RESUMO

The secretory enzyme human ribonuclease 1 (RNase1) is involved in innate immunity and anti-inflammation, achieving host defense and anti-cancer effects; however, whether RNase1 contributes to adaptive immune response in the tumor microenvironment (TME) remains unclear. Here, we established a syngeneic immunocompetent mouse model in breast cancer and demonstrated that ectopic RNase1 expression significantly inhibited tumor progression. Overall changes in immunological profiles in the mouse tumors were analyzed by mass cytometry and showed that the RNase1-expressing tumor cells significantly induced CD4+ Th1 and Th17 cells and natural killer cells and reduced granulocytic myeloid-derived suppressor cells, supporting that RNase1 favors an antitumor TME. Specifically, RNase1 increased expression of T cell activation marker CD69 in a CD4+ T cell subset. Notably, analysis of cancer-killing potential revealed that T cell-mediated antitumor immunity was enhanced by RNase1, which further collaborated with an EGFR-CD3 bispecific antibody to protect against breast cancer cells across molecular subtypes. Our results uncover a tumor-suppressive role of RNase1 through adaptive immune response in breast cancer in vivo and in vitro, providing a potential treatment strategy of combining RNase1 with cancer immunotherapies for immunocompetent patients.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Ribonucleases/farmacologia , Imunidade Adaptativa , Ativação Linfocitária , Linfócitos T , Microambiente Tumoral , Linhagem Celular Tumoral
7.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719376

RESUMO

Bruton's tyrosine kinase (BTK) is a proven target in mantle cell lymphoma (MCL), an aggressive subtype of non-Hodgkin lymphoma. However, resistance to BTK inhibitors is a major clinical challenge. We here report that MALT1 is one of the top overexpressed genes in ibrutinib-resistant MCL cells, while expression of CARD11, which is upstream of MALT1, is decreased. MALT1 genetic knockout or inhibition produced dramatic defects in MCL cell growth regardless of ibrutinib sensitivity. Conversely, CARD11-knockout cells showed antitumor effects only in ibrutinib-sensitive cells, suggesting that MALT1 overexpression could drive ibrutinib resistance via bypassing BTK/CARD11 signaling. Additionally, BTK knockdown and MALT1 knockout markedly impaired MCL tumor migration and dissemination, and MALT1 pharmacological inhibition decreased MCL cell viability, adhesion, and migration by suppressing NF-κB, PI3K/AKT/mTOR, and integrin signaling. Importantly, cotargeting MALT1 with safimaltib and BTK with pirtobrutinib induced potent anti-MCL activity in ibrutinib-resistant MCL cell lines and patient-derived xenografts. Therefore, we conclude that MALT1 overexpression associates with resistance to BTK inhibitors in MCL, targeting abnormal MALT1 activity could be a promising therapeutic strategy to overcome BTK inhibitor resistance, and cotargeting of MALT1 and BTK should improve MCL treatment efficacy and durability as well as patient outcomes.


Assuntos
Linfoma de Célula do Manto , Proteínas Tirosina Quinases , Humanos , Adulto , Tirosina Quinase da Agamaglobulinemia/genética , Proteínas Tirosina Quinases/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética
9.
Nat Cancer ; 3(10): 1211-1227, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36253486

RESUMO

Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated promising clinical activity in multiple cancers. However, resistance to PARP inhibitors remains a substantial clinical challenge. In the present study, we report that anaplastic lymphoma kinase (ALK) directly phosphorylates CDK9 at tyrosine-19 to promote homologous recombination (HR) repair and PARP inhibitor resistance. Phospho-CDK9-Tyr19 increases its kinase activity and nuclear localization to stabilize positive transcriptional elongation factor b and activate polymerase II-dependent transcription of HR-repair genes. Conversely, ALK inhibition increases ubiquitination and degradation of CDK9 by Skp2, an E3 ligase. Notably, combination of US Food and Drug Administration-approved ALK and PARP inhibitors markedly reduce tumor growth and improve survival of mice in PARP inhibitor-/platinum-resistant tumor xenograft models. Using human tumor biospecimens, we further demonstrate that phosphorylated ALK (p-ALK) expression is associated with resistance to PARP inhibitors and positively correlated with p-Tyr19-CDK9 expression. Together, our findings support a biomarker-driven, combinatorial treatment strategy involving ALK and PARP inhibitors to induce synthetic lethality in PARP inhibitor-/platinum-resistant tumors with high p-ALK-p-Tyr19-CDK9 expression.


Assuntos
Quinase do Linfoma Anaplásico , Antineoplásicos , Neoplasias da Mama , Quinase 9 Dependente de Ciclina , Animais , Feminino , Humanos , Camundongos , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacologia , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Quinase 9 Dependente de Ciclina/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fator B de Elongação Transcricional Positiva , Tirosina/química , Tirosina/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Estados Unidos
10.
Mol Cancer ; 21(1): 185, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163179

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy using brexucabtagene autoleucel (BA) induces remission in many patients with mantle cell lymphoma (MCL), and BA is the only CAR T-cell therapy approved by the FDA for MCL. However, development of relapses to BA is recognized with poor patient outcomes. Multiple CAR T-cell therapies have been approved for other lymphomas and the resistance mechanisms have been investigated. However, the mechanisms underlying BA relapse in MCL have not been investigated and whether any previously reported resistance mechanisms apply to BA-relapsed patients with MCL is unknown. METHODS: To interrogate BA resistance mechanisms in MCL, we performed single-cell RNA sequencing on 39 longitudinally collected samples from 15 BA-treated patients, and multiplex cytokine profiling on 80 serial samples from 20 patients. RESULTS: We demonstrate that after BA relapse, the proportion of T cells, especially cytotoxic T cells (CTLs), decreased among non-tumor cells, while the proportion of myeloid cells correspondingly increased. TIGIT, LAG3, and CD96 were the predominant checkpoint molecules expressed on exhausted T cells and CTLs; only TIGIT was significantly increased after relapse. CTLs expanded during remission, and then contracted during relapse with upregulated TIGIT expression. Tumor cells also acquired TIGIT expression after relapse, leading to the enhanced interaction of tumor cell TIGIT with monocyte CD155/PVR. In myeloid cells, post-relapse HLA-II expression was reduced relative to pretreatment and during remission. Myeloid-derived suppressor cells (MDSCs) were enriched after relapse with elevated expression of activation markers, including CLU (clusterin) and VCAN (versican). Extracellular chemokines (CCL4, CXCL9, CXCL13), soluble checkpoint inhibitors (sPD-L1, sTIM3, s4-1BB), and soluble receptors (sIL-2R, sTNFRII) were decreased during remission but elevated after relapse. CONCLUSIONS: Our data demonstrate that multiple tumor-intrinsic and -extrinsic factors are associated with T-cell suppression and BA relapse. Among these, TIGIT appears to be the central player given its elevated expression after BA relapse in not only CTLs but also MCL cells. The acquisition of TIGIT expression on tumor cells is MCL-specific and has not been reported in other CAR T-treated diseases. Together, our data suggest that co-targeting TIGIT may prevent CAR T relapses and thus promote long-term progression-free survival in MCL patients.


Assuntos
Linfoma de Célula do Manto , Receptores de Antígenos Quiméricos , Adulto , Antígenos CD , Clusterina , Citocinas/metabolismo , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/terapia , Recidiva Local de Neoplasia , Receptores Imunológicos/genética , Linfócitos T , Versicanas
12.
J Biol Chem ; 298(4): 101817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278434

RESUMO

Expression of the receptor tyrosine kinase ephrin receptor A10 (EphA10), which is undetectable in most normal tissues except for the male testis, has been shown to correlate with tumor progression and poor prognosis in several malignancies, including triple-negative breast cancer (TNBC). Therefore, EphA10 could be a potential therapeutic target, likely with minimal adverse effects. However, no effective clinical drugs against EphA10 are currently available. Here, we report high expression levels of EphA10 in tumor regions of breast, lung, and ovarian cancers as well as in immunosuppressive myeloid cells in the tumor microenvironment. Furthermore, we developed anti-EphA10 monoclonal antibodies (mAbs) that specifically recognize cell surface EphA10, but not other EphA family isoforms, and target tumor regions precisely in vivo with no apparent accumulation in other organs. In syngeneic TNBC mouse models, we found that anti-EphA10 mAb clone #4 enhanced tumor regression, therapeutic response rate, and T cell-mediated antitumor immunity. Notably, the chimeric antigen receptor T cells derived from clone #4 significantly inhibited TNBC cell viability in vitro and tumor growth in vivo. Together, our findings suggest that targeting EphA10 via EphA10 mAbs and EphA10-specific chimeric antigen receptor-T cell therapy may represent a promising strategy for patients with EphA10-positive tumors.


Assuntos
Anticorpos Monoclonais , Receptores de Antígenos Quiméricos , Receptores da Família Eph , Linfócitos T , Neoplasias de Mama Triplo Negativas , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Receptores da Família Eph/imunologia , Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
STAR Protoc ; 3(1): 101198, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243381

RESUMO

Immunotherapy via PD-1/PD-L1 blockade is a promising strategy to eradicate cancer cells. However, the PD-L1 pathological level is inconsistent with the therapeutic response and is not a reliable biomarker to stratify patients for anti-PD-1/PD-L1 therapy. Here, we describe patient sample deglycosylation in an immunohistochemistry (IHC) assay to resolve this challenge. This protocol facilitates antigen retrieval by removing N-glycans from surface antigens on formalin-fixed paraffin-embedded (FFPE) tissue slides and can be applied in medical pathology for multiple cancer types. For complete details on the use and execution of this profile, please refer to Lee et al. (2019).


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Imuno-Histoquímica , Imunoterapia , Neoplasias/terapia
14.
Am J Cancer Res ; 12(1): 123-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141008

RESUMO

The atezolizumab (Tecentriq), a humanized antibody against human programmed death ligand 1 (PD-L1), combined with nab-paclitaxel was granted with accelerated approval to treat unresectable locally advanced or metastatic triple-negative breast cancer (TNBC) due to the encouraging positive results of the phase 3 IMpassion130 trial using PD-L1 biomarker from immune cells to stratify patients. However, the post-market study IMpassion131 did not support the original observation, resulting in the voluntary withdrawal of atezolizumab from the indication in breast cancer by Genentech in 2021. Emerging evidence has revealed a high frequency of false negative result using the standard immunohistochemical (IHC) staining due to heavy glycosylation of PD-L1. The removal of glycosylation prevents from the false negative staining, enabling more accurate assessment of PD-L1 levels and improving prediction for response to immune checkpoint therapy. In the present study, the natural and de-glycosylated PD-L1 expression in tumor and immune cells from nine TNBC patients were analyzed by using clone 28-8 monoclonal antibody to correlate with treatment outcome. Our results demonstrate that: (1) Removal of the glycosylation indeed enhances the detection of PD-L1 by IHC staining, (2) The PD-L1 levels on tumor cell surface after removal of the glycosylation correlates well with clinical responses for atezolizumab treatment; (3) The criteria used in the IMpassion130 and IMpassion131 trials which scored the natural PD-L1 in the immune cells failed to correlate with the clinical response. Taken together, tumor cell surface staining of PD-L1 with de-glycosylation has a significant correlation with the clinical response for atezolizumab treatment, suggesting that treatment of atezolizumab may be worthy of further consideration with de-glycosylation procedure as a patient stratification strategy. A larger cohort to validate this important issue is warranted to ensure right patient population who could benefit from the existing FDA-approved drugs.

15.
Oncotarget ; 12(20): 2089-2100, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34611482

RESUMO

Although basal cell carcinoma (BCC) is often managed successfully with surgery, patients with locally advanced BCC (laBCC) or metastatic BCC (mBCC) who are not candidates for surgery or radiotherapy have limited treatment options. Most BCCs result from aberrant Hedgehog pathway activation in keratinocyte tumor cells, caused by sporadic or inherited mutations. Mutations in the patched homologue 1 gene that remove its inhibitory regulation of Smoothened homologue (SMO) or mutations in SMO that make it constitutively active, lead to Hedgehog pathway dysregulation and downstream activation of GLI1/2 transcription factors, promoting cell differentiation and proliferation. Hedgehog inhibitors (HHIs) block overactive signaling of this pathway by inhibiting SMO and are currently the only approved treatments for advanced BCC. Two small-molecule SMO inhibitors, vismodegib and sonidegib, have shown efficacy and safety in clinical trials of advanced BCC patients. Although these agents are effective and tolerable for many patients, HHI resistance occurs in some patients. Mechanisms of resistance include mutations in SMO, noncanonical cell identity switching leading to tumor cell resistance, and non-canonical pathway crosstalk causing Hedgehog pathway activation. Approaches to managing HHI resistance include switching HHIs, HHI and radiotherapy combination therapy, photodynamic therapy, and targeting Hedgehog pathway downstream effectors. Increasing understanding of the control of downstream effectors has identified new therapy targets and potential agents for evaluation in BCC. Identification of biomarkers of resistance or response is needed to optimize HHI use in patients with advanced BCC. This review examines HHI resistance, its underlying mechanisms, and methods of management for patients with advanced BCC.

16.
Nat Commun ; 12(1): 2788, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986289

RESUMO

Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese/patologia , Efrina-A4/metabolismo , Células-Tronco Neoplásicas/patologia , Ribonuclease Pancreático/metabolismo , Antígeno AC133/metabolismo , Animais , Neoplasias da Mama/genética , Carcinogênese/genética , Linhagem Celular , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Ligação Proteica/genética , Ribonuclease Pancreático/sangue , Ribonuclease Pancreático/genética , Resultado do Tratamento
17.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855973

RESUMO

Immune checkpoint blockade therapy has demonstrated promising clinical outcomes for multiple cancer types. However, the emergence of resistance as well as inadequate biomarkers for patient stratification have largely limited the clinical benefits. Here, we showed that tumors with high TYRO3 expression exhibited anti-programmed cell death protein 1/programmed death ligand 1 (anti-PD-1/PD-L1) resistance in a syngeneic mouse model and in patients who received anti-PD-1/PD-L1 therapy. Mechanistically, TYRO3 inhibited tumor cell ferroptosis triggered by anti-PD-1/PD-L1 and facilitated the development of a protumor microenvironment by reducing the M1/M2 macrophage ratio, resulting in resistance to anti-PD-1/PD-L1 therapy. Inhibition of TYRO3 promoted tumor ferroptosis and sensitized resistant tumors to anti-PD-1 therapy. Collectively, our findings suggest that TYRO3 could serve as a predictive biomarker for patient selection and a promising therapeutic target to overcome anti-PD-1/PD-L1 resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Ferroptose/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata , Neoplasias/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores Proteína Tirosina Quinases/genética , Células THP-1
18.
J Hepatol ; 74(4): 907-918, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33031845

RESUMO

BACKGROUND & AIMS: There are currently limited therapeutic options for hepatocellular carcinoma (HCC), particularly when it is diagnosed at advanced stages. Herein, we examined the pathophysiological role of ROS1 and assessed the utility of ROS1-targeted therapy for the treatment of HCC. METHODS: Recombinant ribonucleases (RNases) were purified, and the ligand-receptor relationship between RNase7 and ROS1 was validated in HCC cell lines by Duolink, immunofluorescence, and immunoprecipitation assays. Potential interacting residues between ROS1 and RNase7 were predicted using a protein-protein docking approach. The oncogenic function of RNase7 was analyzed by cell proliferation, migration and invasion assays, and a xenograft mouse model. The efficacy of anti-ROS1 inhibitor treatment was evaluated in patient-derived xenograft (PDX) and orthotopic models. Two independent patient cohorts were analyzed to evaluate the pathological relevance of RNase7/ROS1. RESULTS: RNase7 associated with ROS1's N3-P2 domain and promoted ROS1-mediated oncogenic transformation. Patients with HCC exhibited elevated plasma RNase7 levels compared with healthy individuals. High ROS1 and RNase7 expression were strongly associated with poor prognosis in patients with HCC. In both HCC PDX and orthotopic mouse models, ROS1 inhibitor treatment markedly suppressed RNase7-induced tumorigenesis, leading to decreased plasma RNase7 levels and tumor shrinkage in mice. CONCLUSIONS: RNase7 serves as a high-affinity ligand for ROS1. Plasma RNase7 could be used as a biomarker to identify patients with HCC who may benefit from anti-ROS1 treatment. LAY SUMMARY: Receptor tyrosine kinases are known to be involved in tumorigenesis and have been targeted therapeutically for a number of cancers, including hepatocellular carcinoma. ROS1 is the only such receptor with kinase activity whose ligand has not been identified. Herein, we show that RNase7 acts as a ligand to activate ROS1 signaling. This has important pathophysiological and therapeutic implications. Anti-ROS1 inhibitors could be used to treatment patients with hepatocellular carcinoma and high RNase7 levels.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Crizotinibe/farmacologia , Neoplasias Hepáticas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ribonucleases/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ensaios de Migração Celular/métodos , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Genome Med ; 12(1): 83, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32988398

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) therapy has demonstrated considerable clinical benefit in several malignancies, but has shown favorable response in only a small proportion of cancer patients. Recent studies have shown that matrix metalloproteinases (MMPs) are highly associated with the microenvironment of tumors and immune cells. However, it is unknown whether MMPs are involved in immunotherapy. METHODS: Here, we used integrative analysis to explore the expression landscape of the MMP family and its association with immune features across multiple cancer types. We used T cell cytotoxicity-mediated tumor killing assay to determine the co-cultured T cell activity of SB-3CT, an MMP2/9 inhibitor. We then used in vitro assays to examine the regulating roles of SB-3CT on PD-L1. We further characterized the efficacy of SB-3CT, in combination with anti-PD-1 and/or anti-CTLA4 treatment in mouse models with melanoma and lung cancer. RESULTS: Our computational analysis demonstrated a strong association between MMP2/9 and immune features. We demonstrated that inhibition of MMP2/9 by SB-3CT significantly reduced the tumor burden and improved survival time by promoting anti-tumor immunity. Mechanistically, we showed that SB-3CT treatment significantly diminished both mRNA and protein levels of PD-L1 in cancer cells. Pre-clinically, SB-3CT treatment enhanced the therapeutic efficacy of PD-1 or CTLA-4 blockade in the treatment of both primary and metastatic tumors. CONCLUSIONS: Our study unraveled novel molecular mechanisms regarding the regulation of tumor PD-L1 and provided a novel combination therapeutic strategy of SB-3CT and ICB therapy to enhance the efficacy of immunotherapy.


Assuntos
Antígeno B7-H1/genética , Compostos Heterocíclicos com 1 Anel/farmacologia , Vigilância Imunológica/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Sulfonas/farmacologia , Animais , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos/imunologia , Linfócitos/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Melanoma Experimental , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...